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Executive Summary

In their White Paper, the Havven foundation (Havven) describe a new cryptocurrency
designed to be stable i.e. to have a constant exchange rate to a fiat currency such as USD.

The design relies on a dual-token system: a reserve token (named havven) which serves
as collateral for an exchange token (named nomin), which can be used for transactions.

In order to stabilize the price of the nomins, the owners of havvens are incentivized to
change the supply of nomins in reaction to demand fluctuations.

This report analyzes the incentives of all involved players from a game theoretic perspec-
tive and investigates the effect of demand shocks through numeric simulations.

Our analysis shows that under certain assumptions havven holders behave as intended by
the system and the price of nomins stabilizes around the target value.

All underlying assumptions are reasonable and reflect the best of our knowledge at the
time of writing this report. However, the results may change fundamentally if critical
assumptions underlying the analysis are violated. In particular,

• demand for nomins was modelled as a mathematical function with characteristics
that allow certain equilibria to arise.

• certain parameter values are crucial for the stability of the system.

• Havven, who design and implement the mechanism, do not require any incentives
to fulfill their role and act in the best interest of all players.
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1 Introduction

Havven aims to launch a new cryptocurrency that is designed to reduce the volatility
associated with most other cryptocurrencies, such as Bitcoin. It creates a token which
exhibits a stable exchange rate with respect to an external asset (e.g. USD). As a result,
the new token could operate as both a means of exchange and a unit of account.

Havven proposes a dual-token solution which is composed of a stabilized exchange token
(named nomin) and a reserve token (named havven) which provides collateral for the
issuance of the nomin. Havven holders are incentivized to change the supply of nomins, so
that no central authority is needed to maintain a stable exchange rate. Havven produced
a White Paper which describes the main characteristics of the solution and the underlying
incentive mechanism.

The center for cryptoeconomics (cryptecon) supported Havven in designing the incentive
scheme which governs the supply of nomins. The aim was to advance the White Paper
to a point where Havven and cryptecon felt confident that the mechanism will produce a
stable currency.

Based on the descriptions in the White Paper, cryptecon conducted a detailed analysis
of the Havven economy and the underlying incentive scheme in particular. Cryptecon
developed a game theoretic model in order to validate the incentive scheme underlying
supply and demand for havvens and nomins. The model studies the partial equilibria that
arise under different scenarios. Finally, cryptecon also conducted a numerical simulation
to test the stability of the identified equilibria.

The results of cryptecon’s economic analysis are subsequently presented. In Section 2 we
describe the proposed stabilization mechanism and formalize the economic relationships
in a game theoretic model. In Section 3 we proceed with two different but complementary
types of equilibrium analysis: an analytical approach in Subsection 3.1 and a calibrated
approach in 3.2. In Section 4 we discuss the assumptions underlying the model, the
involved players’ incentives and the main results. We also highlight certain issues and
risks that may deserve closer attention from Havven. Section 5 presents the results from
the numerical simulations. Finally, we conclude and summarize all recommendations in
Section 6.

2 Model

We start by describing the general framework of the Havven economy. The formal model
is based on the Section ”System Description” of Havven’s White Paper.

The players: There are three main players and two tokens. The first player is a principal
(hereafter “the foundation”) who issues and sells a fixed number H of the currency’s
reserve token havven at price Ph ∈ <+ ∪ {0} in [USD/H].
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Buyers of havvens (hereafter “havven holders”) constitute the second player in the model.
They have the right to issue (and sell) nomins using their havvens as collateral. They are
rewarded for issuing with transaction fees (which will be explained in detail below). They
also have the right to buy back nomins they have issued in case they want to sell their
escrowed havvens. Nomins are the exchange token and can be used for trade purposes by
“nomin users” (defined below). We denote the aggregate number of nomins by N .

Nomin users constitute the third player in the model. They can buy and sell nomins at
a price Pn ∈ <+ ∪ {0} (in [USD/N ]) in the market and use them for transactions. A
transaction fee is paid by nomin users, which is sufficiently small so that it provides little
to no friction on the demand for nomins. The transaction fees are distributed to those
havven holders that have issued nomins, as a reward for their role in maintaining a stable
nomin price. Thus, the larger the number of transactions with nomins, the larger the
reward for havven holders.

The foundation is assumed to act like a benevolent dictator (i.e. a principal whose goal it
is to maximise the overall welfare of all market participants) and designs a set of incentives
(the mechanism) to stabilize the price of nomins at 1USD per nomin.1 In particular, this
set of incentives induces havven holders to (i) provide the collateral and (ii) participate
in the stabilization of the nomin exchange rate.

Havven holders actions: The model is designed as an infinite game with discrete time
periods. At any moment in time t, havven holder i chooses to issue a total quantity of
nomins Ni,t which go into circulation in the market. The net amount of nomins he issues
in period t is defined as the difference Ni,t − Ni,t−1. A havven holder decides between
issuing nomins (i.e., Ni,t > Ni,t−1), buying back nomins (i.e., Ni,t < Ni,t−1), or remaining
idle (i.e., Ni,t = Ni,t−1). When a havven holder issues nomins, he does not decide whether
to sell them or not. Upon issuance, nomins are sold automatically by the foundation at a
minimum price Pn,t of 1. When a havven holder buys nomins, he does it at a maximum
price Pn,t of 1. A havven holder cannot sell one of his havvens if there are nomins in
circulation which are collateralized by this havven.

Imposing the maximum and minimum price for buying and selling nomins, respectively,
implies that there is no room for nomin users to speculate inducing changes in Pn. How-
ever, a havven holder may achieve gains from “seigniorage”, receiving an expected profit
of

∫ Ni,t
Ni,t−1

Ni,tPn,t(Ni,t)dNi,t.

Collateralization ratios: Each havven holder has the right to issue a number of nomins.
However, the value of his issued nomins cannot be larger than the value of the havvens
he holds, i.e., Pn,tNi,t ≤ Ph,tHi,t, for all i and t, where Ph,t is the havven price at period t.
These rules hold for every havven holder i, and thus Pn,tNt ≤ Ph,tH, where Nt =

∑
iNi,t

1Although in the real world nomins and havvens are going to be traded in ETH, since the reference
for the price of a nomin is denominated in USD, we will proceed with the analysis taking Pn = 1USD/N
as the intended constant nomin price.
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and H =
∑

iHi,t.
2 The goal of this rule is to have enough collateral to buy back nomins

when needed. Thus, the foundation continuously tracks the collateralization ratio of every
i:

Ci,t ≡
Pn,tNi,t

Ph,tHi,t

. (1)

Besides the aggregate collateral ratio Ct = (Pn,tNt)/(Ph,tH), the mechanism imposes two
additional thresholds on the collateralization ratio: (i) the optimal collateralization ratio
Copt,t, and (ii) the maximum collateralization ratio Cmax,t. The former is the target ratio
which maintains a stable nomin price and maximizes a havven holder’s profits from fees.
The latter reduces the risk of a collapse due to an undercollateralization (i.e., when the
value of nomins becomes larger than the value of value of the collateral).

The relation between the three ratios is the following:

Copt,t ≡ f(Pn,t)Ct, (2)

Cmax,t ≡ aCopt,t, (3)

where a ≥ 1. The function f(Pn,t) has the following properties: f(Pn,t) ≥ 0, f ′(Pn,t) ≥ 0,
f ′(Pn,t) = 0 at Pn,t = 1, f ′′(Pn,t) < 0 for Pn,t < 1, and f ′′(Pn,t) > 0 for Pn,t > 1. Thus,
when the nomin price falls below 1 USD (e.g. due to a reduction in the demand for
nomins), the Copt required decreases. Although Ct+1 also decreases with respect to Ct, it
does so at a lower rate than Copt,t+1. Thus, havven holders need to buy and burn nomins
to get Ct+1 = Copt,t+1. On the other hand, when the price of nomin climbs above the price
of 1 USD, the new Copt,t+1 increases at a larger rate than Ct+1, giving the havven holder
incentives to issue additional nomins.

In particular, the function f(Pn,t) takes the form

f(Pn,t) ≡ max{σ(Pn,t − 1)φ + 1, 0}. (4)

The fee functions: Havven holder i’s incentive to issue nomins arises from the trans-
action fees he receives. Every nomin user has to pay a small percentage αc for each
transaction. 3 In particular, the aggregate transaction fees collected by the mechanism
at any period t depends on the number of nomins issued and on the velocity of their
circulation,

Ft ≡ αcvtNt. [N ] (5)

The aggregated fees are distributed among the havven holders who have issued nomins.
The fees are the reward for stabilizing the system. They are distributed to havven holders

2The total number of havvens is fixed accross periods. Thus, H = Ht =
∑

iHi,t
3This fee may become smaller with an increased adoption of nomins.
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depending on their collateralization ratio, the optimal and maximal collateralizations
thresholds, and the number of havvens they hold. In particular, the fees per havven
collected by i in period t are

αr,i,t = αbase,tΓi,t, [N/H] (6)

where

Γi,t ≡



Ci,t
Copt,t

if Ci,t ≤ Copt,t,

Cmax,t−Ci,t
Cmax,t−Copt,t if Copt,t ≤ Ci,t ≤ Cmax,t,

0 otherwise.

(7)

In the case of Cmax,t < Ci,t, havven holder i does not collect any fees. The aggregate
amount of fees collected from nomin users has to be equal to the total amount of fees
rewarded to havven holders, i.e.,

Ft =
∑
i

αr,i,tHi,t. [N ] (8)

This last equality yields the floating value of αbase,t,

αbase,t =
αcvtNt∑
iHiΓi,t

. [N/H] (9)

Escrowed Havvens: As mentioned above, a havven holder must not sell havvens which
act as collateral for nomins in circulation. The number of escrowed havvens for each
havven holder is defined as

Ȟi,t =
Pn,tNi,t

Ph,tCmax,t
. (10)

Havven holder i may sell his remaining havvens Hi,t − Ȟi,t without restriction. However,
he has to take into account that this action will change his collateralization ratio and, as
a consequence, his reward from fees.

Main assumptions: It is important to restate certain assumptions underlying (implicitly
or explicitly) the mechanism proposed in the White Paper.
Assumption 1. The price of each havven is given by

Ph,t ≡
1

H

∞∑
τ=1

FtPn,t
(1 +R)τ

=
FtPn,t
HR

. [USD/H] (11)
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Important: In the White Paper, Formula 11 is written as

Ph,t ≡
Ft
HR

.

Hence, the price of havven is defined in terms of nomins when it should be defined in
terms of USD. We recommend to fix this.

This assumption comes with two implications. First, it reduces the mechanism’s exposure
to speculative attacks through Ph,t since the set of incentives does not depend on the
market price of havvens but on the price given by this assumption. Second, it allows for
an explicit relationship between the demand for nomins, return from fees, and the price
of havvens. This relationship will be useful for the subsequent analysis.
Assumption 2. The foundation does not play strategically.

The set of incentives for the foundation is exogenous to the model i.e. within the scope
of the subsequent analysis, the foundation does not look for an optimal mechanism, but
takes a passive role in controlling the stability of the system.
Assumption 3. There exists a positive demand for nomins.

This assumption is crucial. Without it we cannot proceed with the analysis. The assump-
tion will be discussed in Section 4 in more detail.

The havven holder’s problem: As a consequence of assumptions 2 and 3, only havven
holders behave strategically.

A havven holder i planning to sell havvens after T periods makes profits from three
different sources: (i) fees rewarded from his collateralization ratio up to period T , (ii)
future sales of his havvens, and (iii) seigniorage. Since in equilibrium the market price of
a havven must be equal to the expected discounted future fees rewarded, the profit from
selling a havven in period t+T is equal to Ph,t+T . Therefore, we can consider that havven
holder i’s expected profits only depends on fees and seigniorage.

Hence, at any period t, any havven holder i chooses Ni,t to maximize his expected pay-
offs. He does it while taking into account the mechanism proposed and other havven
holders’ behavior, i.e., N−i,t (where −i indicates all havven holders but i). At any period
t, havven holder i observes the price of the previous period Pn,t−1, which together with
Ni,t−1, Ph,t−1 and Hi, gives Ci,t−1 and Copt,t−1. Thus, he chooses Ni,t to solve
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max
Ni,t

∞∑
τ=0

1

(1 +R)τ+1

[∫ Ni,t+τ

Ni,t+τ−1

Ni,t+τ P̃n,t+τ (Nt+τ )dNi,t+τ + αr,i,t+τHi,t+τ

]
, (HHP)

subject to,

eq.(1)− eq.(11),

P̃n,t+τ (Nt+τ ) ≡


Pn,t+τ (Nt+τ ) if Ni,t+τ > Ni,t+τ−1 and Pn,t+τ (Nt+τ ) ≥ 1,

Pn,t+τ (Nt+τ ) if Ni,t+τ < Ni,t+τ−1 and Pn,t+τ (Nt+τ ) ≤ 1,

0 otherwise.

(12)

Ni,t+1 ≡ arg max
Ni,t+1

∞∑
τ=1

1

(1 +R)τ

∫ Ni,t+τ+1

Ni,t+τ

Ni,t+τ+1P̃n,t+τ+1(Nt+τ+1)dNi,t+τ+1+

+
∞∑
τ=1

1

(1 +R)τ+1
αr,i,t+τ+1Hi,t+τ+1,

(13)

subject to eq.(1)t+1 − eq.(12)t+1,

where Pn,t+τ (Nt+τ ) is the inverse demand function for nomins at period t+ τ . Note that
we are assuming that the havven holder receives the rewards at the end of each period.

At period t, the havven holder chooses Ni,t to maximize his expected discounted profits
(objective function (HHP)) knowing that in the next period he will choose the optimal
Ni,t+1 (eq.(13)). Eq. (12) indicates the restriction in the maximum and minimum price
at which a havven holder has to buy and sell nomins, respectively.

3 Analysis

In this section we proceed with the analysis of the previous setup. In particular, we con-
centrate our analysis on the havven holder’s problem. In reality, the demand for nomins
is unknown (at least in the beginning when no information for a reasonable estimate is
available yet). However, we need to assume a particular demand function to proceed
with the analysis. We use the quantity theory of money, in particular Fisher’s equation
of exchange, to define the demand for nomins function. This equation states that the
demand for money (L) is:

L =
GDP

v
.

In equilibrium, the demand for money equals the supply of money, and therefore the
following condition must hold:

L = N.
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We consider that a fraction (ε) of the total amount of world e-commerce (which we denote
as our GDP ) will use nomins as the transaction currency. Since the GDP is measured in
USD, the Fisher equation becomes:

vN =
εGDP

Pn
.

This equation can be rearranged to resemble the inverse demand function for nomins:

Pn =
εGDP

vN
. [USD/N ] (14)

The analysis is conducted using two different approaches. First, we solve the havven
holder’s problem (HHP) when each havven holder knows the demand function for nomins.
This is the analytical approach. Second, we assume that havven holders do not know the
demand function for nomins, but can observe the price of a nomin at any point in time.4

For this case, we use a calibrated approach. By that we do not mean that we try to
define correct values for the various parameters. The name rather hints at the havven
holders’ behaviour. In this approach, havven holders calibrate their number of nomins in a
sequence of steps to maximize their fees. Each havven holder observes the collateralization
levels and, as consequence, adjusts his number of nomins to increase his fees.5 This yields
a new nomin price and collateralization levels. Thus, havven holders may have incentives
to adjust their amount of nomins again and so on.

Before the detailed analysis, we present the main results:

Main Result: Under certain assumptions and parameters, havven holders will follow
the proposed mechanism and the price of nomins will stabilize at around Pn = $1.

3.1 Analytical approach:

We have formulated the havven holder’s problem as an infinite game since, if he decides to
sell his havvens, the price he will receive is given by (11). Thus, the game can be solved
recursively, i.e. we look for the solution of period t assuming that the havven holder
behaves optimally in the following periods.

We consider the current period (which we normalize as t = 0) in which havven holder i
observes that the price of nomins in the previous period Pn,−1 6= 1 (Ci,−1 6= Copt,−1). We
want to see if he chooses the number Ni,0 such that Pn,0 = 1 and restores Ci,0 = Copt,0
when all other havven holders are choosing N−i,0.

6 Note that, when i modifies Ni,0, he is

4This will also be the case in reality, which makes the assumption reasonable.
5Since his collateralization level Ci and collateralization target Copt differ only when Pn 6= 1, it is

equivalent to say that the havven holder observes Pn.
6For simplicity, we consider that there is only one additional havven holder. This is equivalent to a

situation with many havven holders with homogeneous behaviour.
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not only changing Pn,0 but also Ci,0 and Copt,0 (through f(Pn,0) and C0). Hence, he has
to take into account all these effects which affect his rewarded fees.

Moreover, havven holder i would like to increase his rewarded fees, but he would also like
to choose a Ni,0 to get profits from seigniorage. For instance, when Pn,0 is low, he may
try to purchase nomins to induce undersupply of nomins and Pn,0 > 1. Later, he could
sell the excess number of nomins at his hand at that price.

In addition to the assumptions from White Paper, which are outlined above, we require
the following additional assumptions for the analytical approach:
Assumption 4. Havven holders sell their havvens in the third period at price Ph,2. The
new holders instantaneously sell nomins at price Pn,2 = 1.

We make this assumption for two reasons. First, it allows us to simplify the problem to a
two-period case. Since in the last period the trade of havvens is done at the price of nomins
of 1, there is no strategic decision during that period. Additionally, two periods allows
us to understand whether the havven holder has incentives to manipulate the number of
nomins to get gains from seigniorage.
Assumption 5. The function f(.) has value zero when Pn = 0, i.e., f(0) = 0.

The assumption helps to avoid a case in which f(ε) >> 0 when ε is close to zero, which
would imply Copt > C (inducing an increment in N) when a reduction in N is needed to
increase Pn. This last assumption requires σ ≥ 1.
Assumption 6. Havven holder i observes the total number of nomins N−i issued by all
other havven holders.
Assumption 7. Each havven holder knows the inverse demand function for nomins,
which has the general shape of equation (14).
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Therefore, problem (HHP) becomes:

max
Ni,0

1

(1 +R)
[

∫ Ni,0

Ni,−1

Ni,0P̃n,0(N0)dNi,0 + αr,i,0Hi,0]+

+
1

(1 +R)2
[

∫ Ni,1

Ni,0

Ni,1P̃n,1(N1)dNi,1 + αr,i,1Hi,1]+

+
1

(1 +R)3
[Ph,2Hi −Ni,2],

(HHP’)

subject to,

eq.(1)− eq.(11),

P̃n,0(N0) ≡


Pn,0(N0) if Ni,0 > Ni,−1 and Pn,0(N0) ≥ 1,

Pn,0(N0) if Ni,0 < Ni,−1 and Pn,0(N0) ≤ 1,

0 otherwise.

(15)

Ni,1 ≡ arg max
Ni,1

1

(1 +R)2
[

∫ Ni,1

Ni,0

Ni,1P̃n,1(N1)dNi,1 + αr,i,1Hi,1]+

+
1

(1 +R)3
[Ph,2Hi −Ni,2],

(16)

subject to,

eq.(1)t=1 − eq.(11)t=1,

P̃n,1(N1) ≡


Pn,1(N1) if Ni,1 > Ni,0 and Pn,1(N1) ≥ 1,

Pn,1(N1) if Ni,1 < Ni,−1 and Pn,1(N1) ≤ 1,

0 otherwise.

(17)

In the analytical approach every havven holder knows the demand function for nomins
and uses it to choose Ni,t taking into account the changes on Pn,t, f(Pn,t), Ci,t and Copt,t
at the same time. We show that in equilibrium, havven holder i maximizes his profits by
choosing the number of nomins Ni,t that yields Pn,t = 1. The technical derivation of the
result can be found in the Appendix.

The intuition behind the result with respect to profits from fees is the following: a havven
holder maximizes his profits from fees when Ci,t = Copt,t, which occurs when Pn,t = 1.
However, a change in Ni,t also affects C−i,t. When both Ci,t and C−i,t are lower (or higher)
than Copt,t, a change (in the right direction) in Ni,t has a positive effect on αr,i,t through
Ci,t which is larger than the negative effect through C−i,t. When Ci,t < Copt,t < C−i,t (or
the opposite), a change (in the right direction) in Ni,t has a positive effect in both Ci,t
and C−i,t. This last effect is because there is a reduction in Γ−i,t, increasing αbase,t.
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With respect to profits from seigniorage, the intuition is the following: when there is a
need to increase the supply of nomins (i.e., when Pn,t > 1), a havven holder can improve
his profits by selling nomins. The number of nomins he can sell is limited, since no nomin
buyer will accept a price greater than Pn,t = 1. In other words, in this case he maximizes
profits from seigniorage when Pn,t = 1. When there is a need of reducing the supply of
nomins (i.e., when Pn,t < 1), the havven holder has to buy back nomins, which is costly
for him. However, future profits from fees will compensate him.

3.2 Calibrated approach:

In this approach, assumptions 4 and 3 do not hold, but assumptions 5 and 6 do. In
contrast to the previous approach, we assume that the havven holder does not know the
demand function for nomins. This is arguably a step towards a more realistic situation.
Assumption 8. The inverse demand function for nomins is unknown by havven holders.

After each additional amount of nomins, the havven holder observes the new market price
and issues more nomins until Pn = $1 is reached. He takes into account the prices and
the Copt observed in order to choose additional quantities. This is, at period t (which
now just indicates ”steps” in the calibration process) Ni,t = Copt,t−1 ∗ Ph,t−1 ∗Hi/Pn,t−1.
This number of nomins, together with Ni,t will define the new prices Pn,t, Ph,t and Copt,t,
which are going to be observed again by havven holders to choose Ni,t+1 and so on. The
procedure to change the amount of issued nomins follows the example in the White Paper
with the title “Nomins Price Change”. This example shows only one iteration. Thus, we
recommend to improve the example in the White Paper to clarify this point. It may be
possible to just write an explanation or to copy the following calibration (or part of it).

We illustrate the calibrated approach with some examples.

Case 1: Negative shock in demand for nomins.

We suppose there are two havven holders i = 1, 2 who possess H1 = 100 and H2 = 200
respectively. Initially, they have issued N1 = 50 and N2 = 100. The interest rate is
R = 0.6% and the fee paid in a transaction with nomins is k = 0.2%. The parameters
of function f(Pn) are σ = 95 and φ = 3, while Cmax = 1.25Copt in every period. Havven
holders face an inverse demand for nomins given by equation (14) where εGDP = 900
and v = 6, yielding to Pn = 1. We also assume that:
Assumption 9. The velocity of nomins is fixed.

Notice from equation (14) that when a change in εGDP is completely absorbed by the
same change in velocity, the price of nomins is not affected by shocks in the GDP . The
assumption considers the extreme case in which a shock has no effect on velocity but on
nomins price. This will be discussed further in Section 4.
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Important: The parameters were chosen to have Pn = $1. This allows us to start from
some steady state and to simulate how the mechanism works after a shock and induces
havven holders to recover the stable price. Hence, any change in one of the parameters
would imply that the remaining ones have to be adjusted so that Pn = $1 holds.
Additionally, the parameters of f(.) were also chosen such that, after a shock, the
equilibrium price Pn = 1 is reached within 6 iterations or less when both havven holders
follow the proposed mechanism. With different parameters, the results may change.
This implies that they have to be chosen very carefully for a correct functioning of the
incentives.

We start with the initial conditions. Next, we analyze the different strategies for each
havven holder after a negative shock in the demand for nomins. These strategies are: (1)
Neither havven holder 1 nor 2 adapt their number of nomins, (2) both havven holders
adapt their number of nomins, (3) only havven holder 1 adapts N1, and (4) only havven
holder 2 adapts N2 while havven holder 1 keeps his initial number of nomins.

Initial conditions at period t = −1 (before the shock) are:

Pn,−1 N1,−1 N2,−1 v−1 Ph,−1 C−1 C1,−1 C2,−1 f(Pn,−1)Copt,−1 Cmax,−1
1 50 100 6 1 0.5 0.5 0.5 1 0.5 0.625

Table 1: Initial conditions.

Since, αbase,−1 = (v−1kN−1)/(H1 + H2) = 0.006 expected profits for each havven holder
are:

π1,−1 = αbase,−1
H1

R
= 0.006 · 100

0.6%
= 100,

π2,−1 = αbase,−1
H2

R
= 0.006 · 200

0.6%
= 200.

(18)

Finally, note that the amounts of escrowed havvens are Ȟ1 = Pn,−1N1,−1/(Ph,−1Cmax,−1) =
80 and Ȟ2 = Pn,−1N2,−1/(Ph,−1Cmax,−1) = 160.

1. At the beginning of period t = 0, there is a negative shock in εGDP . Since the
supply of nomins N has not changed yet and the velocity v is assumed to be fixed,
the price Pn is affected (see equation (14)). We consider the case with a drop of 0.9
in εGDP , yielding a new price Pn,0 = 0.9. Thus,

Pn,0 N1,−1 N2,−1 v0 Ph,0 C0 C1,0 C2,0 f(Pn,0) Copt,0 Cmax,0
0.9 50 100 6 0.9 0.5 0.5 0.5 0.905 0.4525 0.5656

Table 2: Negative shock. Neither havven holder changes their number of nomins.
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Important: Notice that in Table 2, we obtained a new havven price Ph,0 = 0.9.
This, together with the new Pn and old N , implies that Cs do not change.
However, since Pn,0 6= 1, f(Pn,0) < 1 and Copt,0 < Ci there are incentives to
reduce Ni. In contrast to our approach, in the example of the White Paper, it
is (incorrectly) assumed that Ph,0 does not change with a demand shock. We
recommend to amend the White Paper with corresponding calculations.

If holders decide to not change their number of nomins, Copt,0 < Ci,0 and αbase,0 =
0.01. Hence, holders achieve,

π1,0 = αr,i,0
H1

R
= αbase,0

Cmax,0 − C1,0

Cmax,0 − Copt,0
H1

R
= 100, (19)

π2,0 = 200. (20)

Now, Ȟ1,0 = Pn,0N1,0/(Ph,0Cmax,0) = 88.4 and Ȟ2,0 = Pn,0N2,0/(Ph,0Cmax,0) = 176.8.
Thus, the number of “blocked” havvens, which cannot be freely traded without
buying back the issued nomins, has increased. In period t = 1 (and subsequent
periods), if both havven holders continue to keep their number of nomins constant,
they make the same profits.

2. Alternatively, they can choose a lower number of Ni,1 to improve their collection
of fees and, as consequence, inducing Pn,1 closer to one than Pn,0. So, each holder
performs the following calculation to choose his new number of nomins: Because the
fee collection is maximized when Copt,1 = Ci,1, they choose Ni,1 = Copt,1Ph,1Hi/Pn,0
using the price Pn,0 = 0.9, which is the price observed by havven holders. The new
nomin price Pn,1 is given by its demand function for the new Ni,1 and the velocity.
As consequence, the new situation is now

Pn,1 N1,1 N2,1 v1 Ph,1 C1 C1,1 C2,1 f(Pn,1) Copt,1 Cmax,1
0.9945 45.25 90.5 6 0.9 0.500 0.500 0.500 0.999 0.499 0.625

Table 3: Negative shock; both havven holders change their number of nomins following
the proposed mechanism.

Notice that Ph,1 does not change. This can easily be checked using equations (11)
and (14). From the former, we know that vNPn = εGDP while form the latter,
Ph = αcvNPn/HR. Since we assume a unique change in εGDP in this exercise, the
price of havvens remains fixed after the shock.

Now αbase,1 = 0.005. In this case, holders get,

π1,1 = αbase,1
H1

R
+ (N1,1 −N1,0)Pn,0 = 86.22,

π2,1 = 172.45,
(21)

14



Ȟ1,1 = 80 and Ȟ2,1 = 160.

The new nomin price Pn,1 is very close to 1 and, due to the chosen parameters,
f(Pn,1) ≈ 1 and Copt,1 ≈ Ci,1. Thus, havven holders do not have incentives (i.e.,
they are collecting the maximum possible fees) to change again the supply of nomins
N in order to increase their profits.

3. We consider now the case in which havven holder 1 decides to choose new N1

(following the mechanism proposed) while holder 2 remains idle.

Pn,1 N1,1 N2,1 v1 Ph,1 C1 C1,1 C2,1 f(Pn,1) Copt,1 Cmax,1
0.929 45.25 100.0 6 0.90 0.500 0.467 0.516 0.966 0.483 0.604

Table 4: Negative shock; only havven holder 1 reacts; t = 1

Now, αbase,1 = 0.0072. holders achieve,

π1,1 = αbase,1
C1,1

Copt,1

H1

R
+ (N1,1 −N1,0)Pn,0 = 111.79,

π2,1 = αbase,1
Cmax,1−C2,1

Cmax,1−Copt,1
H2

R
+ (N2,1 −N2,0)Pn,0 = 174.43.

(22)

Pn,1 is still lower than one, f(Pn,1) 6= 1, and C1,1 6= Copt,1. Thus, havven holder 1 still
has incentives to change N1 (recall we assumed that havven holder 2 is idle). Havven
holder 1 will continue to change the number of nomins while he has incentives to
do so. Next, we present the results of iterating through subsequent periods:

Pn,2 N1,2 N2,2 v2 Ph,2 C2 C1,2 C2,2 f(Pn,2) Copt,2 Cmax,2
0.919 46.80 100.0 6 0.9 0.500 0.478 0.511 0.951 0.475 0.594

⇒ αbase,2 π1,2 π2,2
0.0074 117.7 173.1

Table 5: Negative shock; only havven holder 1 reacts; t = 2

Pn,3 N1,3 N2,3 v3 Ph,3 C3 C1,3 C2,3 f(Pn,3) Copt,3 Cmax,3
0.921 46.52 100.0 6 0.9 0.500 0.476 0.512 0.954 0.477 0.596

⇒ αbase,3 π1,3 π2,3
0.0073 118.2 171.7

Table 6: Negative shock; only havven holder 1 reacts; t = 3
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...
(See the Excel file for the missing iterations.)
...

Pn,6 N1,6 N2,6 v6 Ph,6 C6 C1,6 C2,6 f(Pn,6) Copt,6 Cmax,6
0.921 46.6 100.0 6 0.9 0.500 0.477 0.512 0.953 0.477 0.596

⇒ αbase,6 π1,6 π2,6
0.0073 118.53 171.58

Table 7: Negative shock; only havven holder 1 reacts; t = 6

Havven holder 1 improves his payoffs with respect to the initial stage (see equation
(22)) by changing his number of nomins while his rival is idle. His profits improve af-
ter each iteration at the expense of havven holder 2’s profits. However, Pn stabilizes
around $0.921 instead of $1. The reason being that, although Pn 6= 1, C1,6 is similar
to Copt,6. As a consequence, havven holder 1 is already getting the highest possible
amount of fees and has no incentives to change his number of nomins anymore.

4. Finally, we consider the case in which havven holder 1 remains idle and havven
holder 2 changes the number of nomins following the proposed mechanism. Again,
we present several iterations.

Pn,1 N1,1 N2,1 v1 Ph,1 C1 C1,1 C2,1 f(Pn,1) Copt,1 Cmax,1
0.961 50 90.5 6 0.9 0.500 0.534 0.483 0.994 0.497 0.621

⇒ αbase,1 π1,1 π2,1
0.0064 74.8 197.65

Table 8: Negative shock; only havven holder 2 reacts; t = 1

Pn,2 N1,2 N2,2 v2 Ph,2 C2 C1,2 C2,2 f(Pn,2) Copt,2 Cmax,2
0.943 50 93.13 6 0.9 0.500 0.524 0.488 0.983 0.491 0.614

⇒ αbase,2 π1,2 π2,2
0.0063 77.21 203.03

Table 9: Negative shock; only havven holder 2 reacts; t = 2
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...
(See the Excel file for the missing iterations.)
...

Pn,6 N1,6 N2,6 v6 Ph,6 C6 C1,6 C2,6 f(Pn,6) Copt,6 Cmax,6
0.939 50 93.8 6 0.9 0.500 0.522 0.489 0.978 0.489 0.612

⇒ αbase,6 π1,6 π2,6
0.0063 77.25 204.9

Table 10: Negative shock; only havven holder 2 reacts; t = 6

In this case, havven holder 2 improves his profits (Table 10 vs. Table 8) at expense
of the other havven holder’s profits. Again, Pn does not stabilize at 1 but does at a
price closer to 1 than in the previous case, since havven holder 2 has more impact
over the supply of nomins.

In summary, both havven holders rather change the number of nomins than remaining
idle. Although for each of them the best scenario would be if the rival does not do anything
while they adjust their number of nomins, this scenario cannot be an equilibrium. This can
be seen from the following strategic game representation of the previous analysis (for this
representation, we assume that all iterations are made instantaneously and simultaneously
by both havven holders).

N2,0 N∗2
N1,0 100 , 200 77.25 , 204.9
N∗1 118.53 , 171.58 86.21 , 172.43

Table 11: Negative shock; strategic game representation

Ni,0 is the action of remaining idle taken by holder i i.e. he chooses to continue having
the initial number of nomins in the market. N∗i is the action of changing the number of
nomins following the proposed mechanism. Each box has the payoff that both holders
get by choosing some particular action. For example, if havven holder 1 chooses N1,0 and
holder 2 chooses N2,0, the former gets a payoff of 100 and the latter 200. It can be checked
that havven holder 1 will choose N∗1 no matter what action is chosen by havven holder
2 (i.e., 1 gets larger payoffs following N∗1 for any action that 2 can take). Similarly, 2
will choose N∗2 no matter what the action of havven holder 1 is. In other words, action
N∗i strictly dominates remaining idle with Ni,0. Therefore, {N∗1 , N∗2} is the unique Nash
equilibrium.

Moreover, this equilibrium yields a stable nomins price Pn = $1 in accordance with the
project’s claim.
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Case 2: Positive shock in demand for nomins.

Since this case is symmetric to the case of a negative shock except for the sign of the
shock, we only present the final payoffs of the strategic game. Please see the Excel file for
a list of results across all iterations.

N2,0 N∗2
N1,0 100 , 200 100 , 218.5
N∗1 110.2 , 200 114.7 , 229.5

Table 12: Positive shock; strategic game representation

As in the previous case, action N∗i strictly dominates remaining idle with Ni,0 and a
unique Nash equilibrium {N∗1 , N∗2} arises. This equilibrium yields a stable nomins price
Pn = $1, as can be seen in the Excel file.

Case 3: Positive shock - One of the havven holders plays in the opposite direction of
the proposed mechanism.

We consider a case in which havven holder 1 chooses to follow the proposed mechanismin
t = 1 after observing a positive shock in the demand for nomins, i.e., an increment in
nomins price. However, havven holder 2 decides to reduce his number of nomins instead
of increasing them and help reducing Pn. He does so with the intention of increasing Pn
even more and selling nomins in t = 2 at a higher price so that he can gain profits from
”seigniorage” at the expense of gains from fees.

Since the initial price Pn > 1, holder 2 will need to pay that price in order to reduce his
number of nomins in circulation. However, by design, he cannot buy nomins at a price
larger than 1. As consequence, he cannot follow this strategy. If he wants to keep the
price as high as possible, he has to remain idle, something we have analyzed above.

The scenario with a negative shock in which one of the holders plays in the opposite
direction to the mechanism proposed is symmetric to this one. Therefore, there is no
room to manipulate the market price in order to achieve gains from “seigniorage”.

4 Discussion

The mechanism devised by Havven should be designed in such a way that each player has
two kinds of incentives: (i) participation, and (ii) compatibility. The former indicates that
the mechanism must give enough incentives to the players to participate instead of doing
something else. The latter requires that each participant behaves as intended. In this
section, we discuss these incentives (and their related assumptions) for all three players
in the following order: the foundation, nomin users and havven holders.
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Incentives for the foundation: The foundation is the designer of the mechanism. It
has the duty to keep track of all transactions, prices, collateralization ratios, and other
parameters, which are crucial for the stability of the system. Additionally, it may propose
changes in the set of incentives which govern the system or any other correction needed
to improve its performance.

It is assumed that the foundation is a “benevolent dictator” i.e. the foundation does not
require any incentives to fulfill its role and it will act in the best interest of all players.
Absent this assumption, one would have to investigate incentives for the foundation to
take-the-money-and-run under certain circumstances.

Incentives for nomins users: With regard to nomins users, we have assumed that
the demand for a stable token exists. This is a strong assumption since nomins are not a
“traditional” currency. In particular, there is no national authority backing it or imposing
nomins as the official currency. In addition, the equilibrium in the exchange market (the
“interest rate parity condition”) requires that deposits in different currencies offer the
same expected rate of return. Thus, variations in the rates of return for one currency
imply fluctuations in its exchange rate to other currencies. The exchange rate between
nomins and USD is fixed with Pn = 1. Since there is no rate of return from deposits in
nomins but there is a positive rate of return from deposits in USD, it is unclear why there
would be a positive demand for nomins.

However, users of cryptocurrencies usually look for characteristics, which “traditional”
currencies cannot offer. These can be low transaction costs or free and anonymous
transnational money transfers. Evidence of this is the demand observed for other sta-
ble cryptocurrencies. For instance, Tether had USD 2 billion in circulation in January
2018.

We use the quantity theory of money as the approach to give an explicit expression to the
inverse demand function (see equation (14)). It relates the nomin price with some fraction
of the total amount of world e-commerce, the number of nomins in circulation, and its
velocity. When εGDP increases, it is necessary to increase the supply of nomins and/or its
velocity to reduce the price of nomins. Incentives are designed to induce variations in the
former while variations in the latter are completely exogenous. How the velocity will react
to changes in demand is unknown and depends on the market’s distinct characteristics.
Note that only in the (unlikely) case in which the change in velocity absorbs all the change
in εGDP , it will not be possible to induce price changes with the number of nomins in
circulation. Thus, in the “calibrated approach” we assumed a fixed velocity just to focus
on the number of nomins. The spreadsheet with simulations allows for a velocity that
partially responds to changes in εGDP .

Incentives for havven holders: The participation of havven holders depends on the
expected return from fees, which depends again on the fee paid for each nomin transaction
and the expected number of transactions. Similar to any investment decision, havven
holders only participate if the expected return exceeds the opportunity costs. The fee
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paid for each nomin transaction is not yet determined, and since there is no estimate for
the expected number of transactions, an assessment of whether havven holders will have
enough incentives to participate is not possible.

Regarding the compatibility of the incentives, we have shown in Section 3 that, under
certain assumptions and parameters, havven holders will follow the proposed mechanism
and (in equilibrium) the price of nomins will be close to Pn = $1.
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Important: We emphasize the importance of the assumptions and the choice of pa-
rameters underlying the obtained results. Specific issues to consider are the following:
• Equation (14) proposes a function in which the price of nomins is strictly decreas-

ing with N . Thus, that function allows for Pn > 1 (even Pn >> 1) for sufficiently
small number of nomins. However, it seems unlikely that a user will accept a large
price (e.g., Pn = 2) since its last resort buyer (a havven holder who needs to burn
nomins) will not pay more than Pn = 1 (recall that a havven holder is not allowed
to pay more than 1 USD for a nomin). In the extreme case in which Pn = 1 for
N ∈ [0, N∗] and Pn = εGDP/(vN) for N > N∗, the proposed mechanism may
fail to incentivize havven holders to increase the number of nomins in circulation.
In an extreme case of N = 0 the price of nomins will still be fixed at Pn = 1.
Since, a havven holder collects fees depending on the number of havvens he has
(and not in the number of escrowed havvens), he has an incentive to not issue N
if he knows that the remaining havven holders have nomins in circulation (and, as
a consequence, the system is collecting fees). As was mentioned above, a possible
solution might be to make the total fees to be paid to havven holders (equation (8)
proportional to the escrowed havvens and not just to the total number of them.
• All parameters must be carefully chosen since, for example, Ph and αc are con-

nected.
• The function f(Pn) deserves special attention. The value of σ determines how large

the range of Pn is such that f(Pn) = 0. Therefore, under some negative shocks
inducing important drops in Pn, it will be f(Pn) = 0 and Copt = 0. The effect
of this issue in the system is difficult to analyze under numerical examples since
N = 0 and since it is not possible to calculate Pn from equation (14). Although
a large Pn should be expected inducing a large f(Pn), it will remain Copt = 0
because N = 0 and C = 0.
• In the same equation φ indicates how “flat” f(Pn) is around Pn = 1. The larger φ,

the flatter f(Pn) becomes. This implies that the incentive to change the number
of nomins would be weaker for a larger range of Pn on both sides of 1.
• The (partial) floating design of Copt and Cmax may produce some problems in very

extreme cases. We argue that the design is not fully floating since Cmax can take
a maximum value of 1 and, in this case, Copt a maximum of 1/a. Copt and Cmax
increase when Pn suffers a positive shock (i.e. price increases). An important
positive shock may produce that Cmax reaches its maximum, implying that Copt
will be fixed, and Ci (which also increases with Pn) may be larger than Copt in
cases in which the right incentives scheme needs it to be lower than Copt. The
system will not suffer this collapse provided that it can react fast to shocks in
demand (at least as fast as the shock is produced).

Assumption 4 is necessary for the analytical approach to be tractable. Assumption 5 is
necessary to avoid a situation in which incentives go in the wrong direction. Assumption
6 allows havven holders to react to other players. Although this assumption is not made
explicitly in the White Paper, we consider that it is reasonable in the sense that it will
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not be difficult to make Ni “public” from a technical point of view.

Assumption 7 is crucial for the analysis. At some point of the analysis, a specific function
for the demand of nomins has to be assumed to determine the price of nomins Pn for a
certain supply of nomins.

In the analytical approach we assumed that each havven holder knows the demand func-
tion for nomins and anticipates the price of nomins Pn for each number of nomins he
issues based on the number of nomins issued by all other havven holders. In the cal-
ibrated approach, havven holders do not know the demand function, however, we still
assume a specific function. In this case, they decide about the number of nomins they
issue based on the observation of previous Pn. After every havven holder has chosen their
new number of nomins, a new price Pn is determined and revealed to all havven holders.
The havven holders use this information to re-adjust their nomins again and so on. This
last approach seems closer to the real world as no player (not even the foundation) knows
the demand function for nomins.

Important: The fact that the actual demand function for nomins is unknown generates
a critical situation (especially during the implementation stage), since an inadequate
selection of parameters may induce an immediate collapse of the whole system. The
foundation needs to define a clear and careful road map to reduce this risk. An example
of a “dead starting” may be the following: the foundation puts H = 1000 on sale at
a price Ph = 0.5. The parameters of f(.) are σ = 50 and φ = 3 (such large σ implies
that f(.) = 0 for sufficiently low Pn 6= 0 ). Suppose that havven holders start to sell
nomins under the assumption that there is a strong demand for them. If the assumption
is wrong and the demand is weak, there will be an over supply of nomins, inducing a
low Pn. Due to the parameters chosen for f(.), this price yields to f(Pn) = 0. Hence,
Copt = 0 = Cmax. However, since Pn 6= 0, we have C 6= 0 and we are in a case with
C > Cmax.

5 Simulations

In this section we run numerical simulations to stress test the mechanism. We do not
consider the behavior of individual havven holders, but rather test how the system as a
whole reacts to external demand shocks.7 This is necessary since the demand function is
unknown and might be subject to sudden frictions.

To proceed, we need to start defining the initial inputs. For instance, we consider Copt =
0.5, Ph = 0.5, R = 0.5%, αc = 0.2%, etc. Next, some other initial inputs must be adjusted
to be coherent with them: the level of adoption ε is chosen such that Ph = 0.5, the number
of nomins N such that Pn = 1, and the velocity v such that C = Copt.

8 It is possible to

7We have already shown formally that each havven holder has an incentive to follow the proposed
mechanism proposed

8Since Pn = εGDP/vN and Ph = αcεGDP/HR, hence, v = R/(αcCopt).
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run a simulation with different initial parameters (Copt, fees, initial demand, etc..) but,
in such a case, the remaining ones must be re-calibrated.

Furthermore, we make the following assumptions:

1. The inverse demand function is given by equation (14).

2. The adoption rate for nomins (ε) (i.e., the proportion of the total world e-commerce
that is done with nomins) is exogenous and hence is exposed to exogenous shocks.
We do not consider the possibility that it may be affected by the nomins’ history of
price volatility. Since we have shown that in equilibrium Pn = 1 after every shock,
we would not gain anything by endogenizing the adoption rate.

3. We expect the velocity of nomins to be similar to the velocity of USD. However, since
we allow the velocity to absorb a fixed part of the change of the level of adoption, it
may increase to larger values. We have not considered a more sophisticated velocity
function that also depends on the number of nomins in circulation (i.e., that it
decreases with a larger supply of nomins and vice versa.)

4. The foundation intends to implement a fixed fee per transaction (αc) but have not
yet decided on the value. Our work relies on the assumption that this value will
never change even under an increment in the number of transactions with nomins.
Moreover, since the value of αc is intended to be very low from the beginning, we
do not expect any impact on the demand for nomins due to small changes in αc.

We start by exemplifying a non-stochastic growth and decline in demand. There are
ten “years” of growth/decline in demand. Each year starts with a shock after which the
system reacts with several steps. At the end of the process, we show that the nomin price
approaches the goal of Pn = 1. The degree of approximation to Pn = 1 depends, among
other things, on the parameters of f(Pn) as is shown in the following graphs.

Notice that a larger σ allows for a closer approximation of Pn = 1. However, as mentioned
above, the risk of f(Pn) = 0 increases if there is a sufficiently large negative shock. The
degree of approximation also depends on the value of αc. the lower αc, the closer the limit
Pn to 1.

The non-stochastic decrease shows that after a sufficiently large sequence of negative
shocks (in our example a decrease of 10% over 10 “years”), the system collapses. This is
not surprising since at “year” 10 only 10% of the demand remains. Since the examples
considers a σ = 10, we get f(Pn,10) = 0 as was explained before.

Finally, we run a stochastic simulation, which emulates a volatile growth trend for the
demand. This case confirms that the stability of the set of incentives depends on the
parameters, in particular on σ. The simulation is executed so that the system responds
to shocks or jumps in demand from one “year” to the next one. If the system reacts fast
enough, it will face more granular variations and it should be capable of absorbing the
different shocks. This shows a weakness in the design that could be used by an attacker.
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Figure 1: Nomins price evolution in year 1 when σ = 10 (dash line) and when σ = 1
(solid line).

Using a σ = 1 and a very low αc results in a system that is unstable only when exposed
to very large shocks (reducing the risk of an attack) and that, in the limit, Pn converges
very close to one.

6 Summary of Recommendations

In this section we reiterate the recommendations that were given in the various sections
of the document:

• The calibrated approach in Subsection 3.2 follows the same spirit of the example
“Nomins Price Change” from the White Paper, which is made with only one itera-
tion and without assuming a demand function for nomins. This last point implies
that it is not possible to know whether the new number of nomins yields to Pn = 1.
This example should be improved.

• In the same example from the White Paper, it is assumed that Ph does not change
after the negative shock. As we show in the calibrated approach, this price does
change. See for example, Table 2.

• In Section 3 “Analysis”, we assumed a specific demand function for nomins. It is not
possible to know the demanded quantity of nomins at Pn = 1 without an explicit
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demand function. However, the true demand function is not known. Havven must
take this issue very seriously, in particular in the implementation stage. Otherwise,

– The possibility of an initial scenario with Cmax < Ci emerges, leading to a
collapse of the system in the very beginning.

– In the case that there is no demand for Pn > 1 (recall we assumed that it
exists demand in such a case), the set of incentives may be too weak to induce
havven holders to increase the number of nomins in circulation. Notice that
since f(.) is “flat” around Pn = 1, a nomin price above 1 but close to it
(e.g., Pn = 1.01), will not yield a sufficiently large f(.) to induce a change in
the number of nomins. If this price results from a very low N , the system
will be overcollateralized. In order to mitigate this issue, we recommend to
consider tying incentives to the escrowed havvens rather than to all havvens
in possession. However, more analysis is required to understand the optimal
incentive scheme.

• The system seems incapable of getting out of a situation in which Copt = 0. A
special protocol may be needed.

• Parameters are crucial for the stability of the system. They have to be chosen
carefully to reduce the risk of collapse from shocks in the demand for nomins. We
recommend Havven pays special attention to the parameters affecting f(.):

– The value of φ indicates the range around Pn = 1 such that f(.) is (“almost”)
constant. Thus, this parameter is related to the point mentioned above about
the inverse demand function for nomins.

– The value of σ gives a range from zero to some Pn such that f(.) = 0. The
larger σ, the larger becomes this range and the larger becomes the probability
of Copt = 0.
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Appendix:

Solution of Analytical Approach:

We solve this problem recursively.

In the last period, the havven holder sells his havvens. In order to do this, he has to
buy all his nomins. By Assumption 4, he does it at Pn,2 = 1. Thus, in the last period,
there is no strategic decision about the number of nomins and he sells the number Ni,1.

In previous period t = 1, given some N0, we look for the optimal N∗i,1.

Before proceeding, notice that the fees to be paid to havven holders depends on the
number, vN . When this number changes to v′N ′ without a change in the supply N ′ = N ,
then the velocity v′ is affected, i.e., v′ 6= v. After changing supply N ′ to N ′′, the velocity
will change again such that v′N ′ = v′′N ′′. Therefore, we can treat vN as a constant.9

Therefore, after plugging into the objective function (16) the expression of αr,i,1 and
αbase,1, taking derivatives with respect to Ni,1, and after some operations, we get

N∗i,1P̃n,1(N
∗
i,1, N−i,1) + αcvNHiH−i

Γ ′i,1Γ−i,1 − Γi,1Γ ′−i,1
(HiΓi,1 +H−iΓ−i,1)2

, (23)

where vN is a constant.

The function N∗i,1P̃n,1(N
∗
i,1, N−i,1) is increasing in Ni,1. Thus, the havven holder i finds

it optimal to increase Ni,1. However, when Pn,1(N1) = 1, P̃n,1(N
∗
i,1, N−i,1) = 0 and the

holder i does not have incentives to continue increasing his number of nomins.

The sign of the second term, αcvNHiH−i(Γ
′
i,1Γ−i,1 − Γi,1Γ ′−i,1)/((HiΓi,1 +H−iΓ−i,1)

2) de-
pends only on the comparison of Ci,1 with respect to Copt,1 and it is independent on the
comparison of C−i,1 with Copt,1. We prove this in the following lemma.

Lemma 1. When havven holder i wants to increase his payoffs from fees, he
increases Ni when Ci,1 < Copt,1 and reduces Ni when Ci,1 > Copt,1, indepen-
dently of the value of C−i,1.

Proof: Lemma 1. We consider now, the following scenarios: (1) Ci,1 < Copt,1
and C−i,1 < Copt,1, (2) Ci,1 < Copt,1 and C−i,1 > Copt,1, (3) Ci,1 > Copt,1 and
C−i,1 > Copt,1, and (4) Ci,1 > Copt,1 and C−i,1 < Copt,1.

1. If Ci,1 < Copt,1,

Γi,1 =
Ci,1
Copt,1

,⇒ Γ ′i,1 =
C ′i,1Copt,1 − Ci,1C ′opt,1

C2
opt,1

,

9Most realistically, v might change in a lower proportion than N , being Pn the one who is absorbing
the remaining part of the change in the supply of nomins. However, for sufficiently small changes in N ,
we consider that the assumption is acceptable.
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where

C ′i,1 =
Pn,1N−i,1
Ph,1HiN1

, C ′opt,1 = f ′(Pn,1)C1 = f ′(Pn,1)
Pn,1N1

Ph,1H
≤ 0,

since f ′(Pn,1) = ∂f(.)/∂Pn,1dPn,1/dNi,1 with ∂f(.)/∂Pn,1 ≥ 0 and dPn,1/dNi,1 ≤
0.

If additionally C−i,1 < Copt,1,

Γ−i,1 =
C−i,1
Copt,1

,⇒ Γ ′−i,1 =
C ′−i,1Copt,1 − C−i,1C ′opt,1

C2
opt,1

,

where

C ′−i,1 = −Pn,1N−i,1
Ph,1HiN1

.

Thus,

Γ ′i,1Γ−i,1 − Γi,1Γ ′−i,1
Γi,1Hi + Γ−i,1H−i

=
C ′i,1C−i,1 − C ′−i,1Ci,1

C2
opt,1

f(Pn,1)

H
,

=
2N−i,1H

f(Pn,1)HiH−i
,

≥ 0.

2. In the case of C−i,1 > Copt,1 when Ci,1 < Copt,1,

Γ−i,1 =
Cmax,1 − C−i,1
Cmax,1 − Copt,1

,

=
a

a− 1
− C−i,1

(a− 1)Copt,1
,

⇒ Γ ′−i,1 = − 1

a− 1

C ′−i,1Copt,1 − C−i,1C ′opt,1
C2
opt,1

,

≥ 0,

since,

C ′−i,1Copt,1 − C−i,1C ′opt,1 = C−i,1
C1

N1

[−f(Pn,1) + f(Pn,1)
′Pn,1] ≥ 0,

⇔ f(Pn,1)
′Pn,1 ≥ −f(Pn,1),

⇔ σφ(Pn,1 − 1)φ−1Pn,1 ≥ σ(Pn,1 − 1)φ + 1,

⇔ σ(Pn,1 − 1)φ[φ
Pn,1

Pn,1 − 1
− 1] ≥ 1,

which holds for σ ≥ 1 and φ ≥ 1 (recall that φ ∈ N - 2).

As consequence Γ ′i,1Γ−i,1 − Γi,1Γ ′−i,1 ≥ 0.
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3. We consider now Ci,1 > Copt,1 and C−i,1 > Copt,1,

Γi,1 =
Cmax,1 − Ci,1
Cmax,1 − Copt,1

,

=
a

a− 1
− Ci,1

(a− 1)Copt,1
,

⇒ Γ ′i,1 = − 1

a− 1

C ′i,1Copt,1 − Ci,1C ′opt,1
C2
opt,1

,

≤ 0,

since C ′opt,t ≤ 0.

Therefore, Γ ′i,1Γ−i,1 − Γi,1Γ ′−i,1 ≤ 0 when σ ≥ 1.

4. Finally, Ci,1 > Copt,1 and C−i,1 < Copt,1.

Now,

Γ ′i,1 = − 1

a− 1

C ′i,1Copt,1 − Ci,1C ′opt,1
C2
opt,1

≤ 0,

Γ ′−i,1 =
C ′−i,1Copt,1 − C−i,1C ′opt,1

C2
opt,1

≥ 0,

yielding Γ ′i,1Γ−i,1 − Γi,1Γ ′−i,1 ≤ 0.

The previous lemma shows that, when Ci,1 < Copt,1, profits from fees are increasing with
Ni,1 inducing the holder i to choose the largest possible Ni,1. On the other hand, when
Ci,1 > Copt,1, profits from fees are decreasing with Ni,1 inducing the holder i to choose the
lowest possible Ni,1.

Since αcvNHiH−i(Γ
′
i,1Γ−i,1− Γi,1Γ ′−i,1)/((HiΓi,1 +H−iΓ−i,1)

2) does not have derivative at
Ci = Copt, we cannot apply the standard approach of making the first order condition
equal to zero to get the optimal number of nomins.

However, we know that, from equations (23) profits (both from seigniorage and fees) are
increasing with Ni,1 when Ni,1 > Ni,0. This case occurs when the nomin price is larger
than 1 and there is a need for increasing the supply of nomins. Moreover, both profits
(seigniorage and fees) are maximized when Ni,1 is such that Pn,1 = 1.

When the price Pn is lower than one and there is a need to reduce the supply of nomins,
(i.e., there is a need of Ni,1 < Ni,0 since Copt,1 < C1), fees are decreasing with Ni,1. In
this case, the havven holder i needs to buy and burn nomins, which incurs a cost. Now,
reducing Ni,1 has a negative effect in the first term of equation (23) and a positive effect
on its second term. In the case in which equation (23) is negative with Ni,1, the holder
will find optimal to reduce Ni,1,.
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Since we have (implicitly) assumed that a havven holder finds it optimal to invest in
havvens to get a return from fees, he also finds it optimal to buy back some nomins to
recover these fees since NiPn < Ni when he has to buy nomins and Ni < PhHi due to the
collateralization ratio. Hence, in this case the havven holder’s profits (seigniorage and
fees) are maximized when Ni,1 is such that Pn,1 = 1.

In the first period t = 0, havven holder do not only take into account the fees and the
seigniorage profits of the current period but also the effect of their selection of N0 in the
next period.

Using previous solutions and taking the derivative of (HHP’) with respect of Ni,0, we get

1

(1 +R)
[N∗i,0P̃n,0(N

∗
i,0, N−i,0) + αcvNHiH−i

Γ ′i,0Γ−i,0 − Γi,0Γ ′−i,0
(HiΓi,0 +H−iΓ−i,0)2

]

− 1

(1 +R)2
N∗i,0P̃n,1(N

∗
i,0, N−i,0), (24)

Note that the first two terms (discount with (1 +R)) are the same expression as the ones
analyzed above. We now have the additional expression discounted by (1 + R)2, which
indicates the effects of current decision Ni,0 on next period sale or purchase of nomins.

In case we departure from a condition in which the initial supply of nomins is such
that Pn,0 > 1 and there is needs of an increasing supply of nomins, the holder cannot
find optimal to oversupply them to reduce last term since because the current profit is
discounted at a lower rate than the next one.

Alternatively, when the initial supply of nomins is such that Pn,0 < 1, we know from
previous analysis that the first two terms give incentives to havven holder to reduce his
nomins Ni,0 such that Pn,0 = 1. This incentive is now strength by the last term because
it reduces the negative profits by seigniorage from reducing Ni,0.
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